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Note 

Nonlinear-Multiple-Function Simultaneous 
Least Squares Fitting Procedure 

INTRODUCTION 

Sometimes physicists working in experimental Physics are faced with the analysis 
of data coming from different sources, whose interpretation may follow from quite 
different physical origins, but with the interesting (and desirable) situation that one 
or more of the physical parameters used in the analysis are common to various of 
the experiments. In the present work the analysis is restricted to data coming from 
two different and independent sources, although the procedure may easily be 
extended to more general cases. 

The standard procedure to analyse two sets of data obtained from two different 
experiments on the same physical system is to analyse each of them separatef~~ and 
then to compare the similarities or the discrepancies between both sets of results. 
On physical grounds the common parameters must have the same value and in this 
work a procedure is outlined as to how this aim may be accomplished by 
combining both sets of data in a simultaneous treatment. Our motivation was to use 
all possible physical constraints to determine the common parameters. 

In the next section the basic theory is outlined, and in the last section an example 
is given. 

THEORY 

The general treatment of nonlinear least-squares fit to a given functional form 
developed by Deming [i] will be used as the basis for the present procedure. Let us 
consider two sets of data described by 

I’ =f (.x, p,, p, 1 (la) 

;=gk P,, P3), (lb) 

where x is the independent variable and P,, P1, P, are the parameters to be 
determined, and where P, is common to both descriptions. The data are provided 
in the form 
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where Yi and Zj are measured values of the properties ~9 and I when the indepen- 
dent variable takes values Xi and Xj; while W’Ji and IV, are weights assigned to the 
corresponding data points (Xi, I’,) and (Xi, Zjj, respectively. 

In general, it is expected that, 

J.*j=.r‘(X,. P,) Pz) # I’j, Id&N, iiia) 

zj=g(xj> pz> p3) #<j, 1 <.j< M, [3b) 

and therefore P,, P,, and P; are determined to minimize S, the weighted sum of 
the squares of the deviations, 

s= .f FtyY,-J$+ f Ryz,-2,)‘. {4) 
i= I , == 1 

In order to proceed it is necessary to linearize Eqs. (3a) and (3b) in their depen- 
dences on the parameters to be determined, and this is accomplished by means of a 
Taylor power series expansion of the function given by Eqs. (la) and (lb), on the 
parameters about the initial values PoL, P,,, and Po3. If we define C,. C1, and C, 
by 

c, = P, - PO, isat 

C,=P,-P,z (jbi 

c,=p,-PO, iSC) 

the Gauss normal system of the equations results, 

(1,1)c,+(1,2)c~+(1,3)C,=(1.0) (6a) 

where 

(1,2)C,+(2,2)Cz+(2,3 

(1,3) C, + (2,3) c, f (3,3 

(i,j, = 2 w’,.,f’~iJ’;i+ 2 bYI, 
k-1 n = 1 

(i, 0) = % W,.,fij( Y, - yk) + f W,,, g$(Z, - z,,) ‘, 7’0 j 
h=l ,z= , 

with 
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The solution of Eqs. (6a)-(6c) gives the corrections to the initial values of the 
parameters, and from Eqs. (5a)-(5c) we obtain 

@a) 

P,z = P,, + c, (9b) 

(9c) 

These values for the parameters are used in turn as initial values and a new 
iteration is performed to correct the values P,,, P,,, and P,, for the parameters 
given by Eqs. (9a)-(9c). The procedure is iterated until convergence is achieved to 
the desired degree of approximation, which may be expressed in the form that 
changes in the parameters and/or in S between two successive iterations that are 
below a certain arbitrary value. 

Once the convergence has been obtained, the values for the parameters providing 
the best simultaneous fit to Eqs. (la) and ( lb) in the least-squares sense have been 
determined. 

It has been shown by Deming [2] that an estimate of the standard deviation in 
the ith parameter being fitted is given by 

where IZ is the number of parameters being fitted (3 in the present case), and 4,’ 
indicates the element (i, i) of the inverse matrix to that of the system of 
Eqs. (6a))(6c). 

The experimental uncertainties in both dependent variables and in the indepen- 
dent variable are taken into account through the effective weights [l, 3, 41, 

ct;,i = [(4yij2 + (f:4xij2] -1, lGi<N, (lla) 

wKi = [(4zj)’ + (g;c4xjjz] --I, 1 Gj<M, (lib) 

where (4x,, dyi) are the experimental uncertainties affecting the data point (X,, Yi) 
(similarly for (4,yj, 4ij)), and 

(12a) 

(12b) 
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EXAMPLE 

An example, in which the parameters to be fitted are involved in a str~ong 
nonlinear form in Eqs. (la)-(lb), is that provided by 

500 
+ exp( lw,/kT) - 1 

+ 3R(hv,,ikT)’ exp(hr,,!kT) 
[exp(hv,/kT) - 13’ ’ 

(I3a) 

(l3bj 

where T is the temperature; h, k, and R are Planck’s, Boltzmann’s, and the gas 
constants, respectively. The parameters to be determined are T, and rE, which 
are the Debye temperature and the Einstein frequency, respectively, characteristics 
of the crystalline solid under investigation. Equation (13aj describes a typical 
temperature dependence of the NQR (nuclear quadrupole resonance) transition 
frequency measured in kHz [S, 61; while Eq. (13b) describes a typical specific beat 
expression for six normal modes: 3 acoustics and 3 optic [?‘I. 

The data to be fitted was generated by means of Eqs. (13at(13b); using 
T, = 100 K and vn = 100 cm -I, and the value were dispersed in a Gaussian- 
random way with standard deviations of 2 kHz and 2% for nr,(T) and C(T), 
respectively. Table I shows one particular set of data and the values produced with 
the obtained parameters: T, = (98.233 f 0.0057) K and rE = (100.18 & 0.12) cm ~ ‘” 

It is interesting to mention that in the case in which the dependence of 
Eqs. (la)-(lb) on the parameters is a linear one, the first iteration produces the 
final values. On the other hand, if the parameters are involved in a non1inea.r form, 
several iterations are needed before convergence is achieved. Table II shows ehe 
values for the parameters, obtained in the example, after each iteration, starting 
from different initial guessed values. 

The program is written in Basic for the Commodore PET 2001 computer, and a 
listing is available upon request. 
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TABLE I 

Data Used and Values Determined for the NQR Frequency and the Specific Heat 

r 
(K) 

C ew cc,,, 
(J.‘mol K) (J.‘mol K) 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 
185 
190 
195 
200 

0.60 0.20 

4.30 2.8 I 

13.70 11.65 

26.10 28.43 

53.50 52.04 

79.00 80.71 

111.30 113.00 

145.60 147.89 

186.90 184.68 

224.50 222.88 

263.90 262.17 

299.60 302.29 

347.30 343.07 

384.20 384.37 

428.60 426.11 

471.40 468.20 

513.20 510.59 

549.70 553.22 

594.40 596.07 

636.90 639.09 

0.2418 

5.6877 

15.1800 

23.4448 

31.3605 

34.9928 

37.7319 

40.7179 

43.9971 

45.7958 

44.7777 

44.6634 

47.5434 

47.7316 

46.3083 

46.3255 

47.7183 

47.3500 

48.7830 

48.2661 

0.2562 

5.6781 

15.4268 

24.4483 

31.1789 

35.8719 

39.1282 

41.4272 

43.0894 

44.3206 

45.2534 

45.9748 

46.5428 

46.9973 

47.3662 

47.6695 

47.9217 

48.1336 

48.3132 

48.4667 
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TABLE II 

Values for T,, I#~, and S Obtained at Each Iteration for Different initial Values. 

Iteration 

0 
1 
2 

0 
I 
2 
3 
4 
5 

0 

2 
3 
4 
3 

0 
I 
1 
3 
4 
f 

0 
1 
2 
3 
4 
5 
6 

+ 100.0000 
+ 98.1990 
+ 98.2326 

+ 300.0000 
- 265.4045 
+ 94.3701 
+ 97.3702 
+ 98.2131 
+ 98.2327 

+ 50.0000 
+ 82.4187 
+ 92.9680 
+ 97.7857 
+ 98.2293 
+ 98.2327 

+ 50.0000 
f 75.6493 
+ 91.5756 
+ 97.6540 
+ 98.2279 
+ 98.2327 

+ 150.0000 
+ 41.4357 
+ 79.9207 
+ 95.1202 
+ 98.1241 
+ 98.2324 
+ 98.2327 

i'E 
icm ‘) 

+ 100.0000 
+ 100.1820 
+ lOO.iYO2 

i 50.0000 
f 77.5162 
i- 86.4031 
$ 98.2079 
+ lOOi 
i- 100.1802 

+ 150.0000 
+ 73.6751 

+ 93.0386 
t- 99.6598 
+ lOO.i775 
+ iOC.1803 

+ 5G.0000 
+ 75.1321 
+ 93.88i3 
+ 99.7895 
+ 100.1789 
+ 100.1802 

+ 150.0000 
+ 77.9977 
f 96.6547 
+ 100.2570 
+ 100.1879 
+ 100.1803 
+ 100. i803 

s 

170.980 
39.491 
39.442 

700864.220 
4f7452.502 

2 I390004 
404.i67 

39.596 
39.442 

329326 789 
135841.401 

6715.532 
73.119 
39.443 
39.442 

1463485.580 
149833.034 

6686.25 1 
70.173 
39.443 
39.442 

135509X6 
444805.004 

25228 h09 
503.234 

39.962 
39.442 
39.442 
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